Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
J Gen Virol ; 103(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35060474

RESUMO

Borna disease virus 1 (BoDV-1) is a highly neurotropic RNA virus which was recently demonstrated to cause deadly human encephalitis. Viruses can modulate microRNA expression, in turn modulating cellular immune responses and regulating viral replication. A previous study indicated that BoDV-1 infection down-regulated the expression of miR-505 in rats. However, the underlying mechanism of miR-505 during BoDV-1 infection remains unknown. In this study, we found that miR-505 can inhibit autophagy activation by down-regulating the expression of its target gene HMGB1, and ultimately inhibit the replication of BoDV-1. Specifically, we found that the expression of miR-505 was significantly down-regulated in rat primary neurons stably infected with BoDV-1. Overexpression of miR-505 can inhibit the replication of BoDV-1 in cells. Bioinformatics analysis and dual luciferase reporter gene detection confirmed that during BoDV-1 infection, the high-mobility group protein B1 (HMGB1) that mediates autophagy is the direct target gene of miR-505. The expression of HMGB1 was up-regulated after BoDV-1 infection, and overexpression of miR-505 could inhibit the expression of HMGB1. Autophagy-related detection found that after infection with BoDV-1, the expression of autophagy-related proteins and autophagy-related marker LC3 in neuronal cells was significantly up-regulated. Autophagy flow experiments and transmission electron microscopy also further confirmed that BoDV-1 infection activated HMGB1-mediated autophagy. Further regulating the expression of miR-505 found that overexpression of miR-505 significantly inhibited HMGB1-mediated autophagy. The discovery of this mechanism may provide new ideas and directions for the prevention and treatment of BoDV-1 infection in the future.


Assuntos
Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Proteína HMGB1/genética , MicroRNAs/genética , Animais , Autofagia , Doença de Borna/metabolismo , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Replicação Viral
2.
Emerg Microbes Infect ; 11(1): 6-13, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34783638

RESUMO

In 2021, three encephalitis cases due to the Borna disease virus 1 (BoDV-1) were diagnosed in the north and east of Germany. The patients were from the states of Thuringia, Saxony-Anhalt, and Lower Saxony. All were residents of known endemic areas for animal Borna disease but without prior diagnosed human cases. Except for one recently detected case in the state of Brandenburg, all >30 notified cases had occurred in, or were linked to, the southern state of Bavaria. Of the three detected cases described here, two infections were acute, while one infection was diagnosed retrospectively from archived brain autopsy tissue samples. One of the acute cases survived, but is permanently disabled. The cases were diagnosed by various techniques (serology, molecular assays, and immunohistology) following a validated testing scheme and adhering to a proposed case definition. Two cases were classified as confirmed BoDV-1 encephalitis, while one case was a probable infection with positive serology and typical brain magnetic resonance imaging, but without molecular confirmation. Of the three cases, one full virus genome sequence could be recovered. Our report highlights the need for awareness of a BoDV-1 etiology in cryptic encephalitis cases in all areas with known animal Borna disease endemicity in Europe, including virus-endemic regions in Austria, Liechtenstein, and Switzerland. BoDV-1 should be actively tested for in acute encephalitis cases with residence or rural exposure history in known Borna disease-endemic areas.


Assuntos
Doença de Borna/diagnóstico , Vírus da Doença de Borna/isolamento & purificação , Encefalite Viral/diagnóstico , Idoso , Animais , Doença de Borna/epidemiologia , Doença de Borna/patologia , Doença de Borna/virologia , Vírus da Doença de Borna/classificação , Vírus da Doença de Borna/genética , Encéfalo/patologia , Encéfalo/virologia , Encefalite Viral/epidemiologia , Encefalite Viral/patologia , Encefalite Viral/virologia , Doenças Endêmicas , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia
3.
Int J Biol Macromol ; 192: 55-63, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606793

RESUMO

Inclusion bodies (IBs) are characteristic biomolecular condensates organized by the non-segmented negative-strand RNA viruses belonging to the order Mononegavirales. Although recent studies have revealed the characteristics of IBs formed by cytoplasmic mononegaviruses, that of Borna disease virus 1 (BoDV-1), a unique mononegavirus that forms IBs in the cell nucleus and establishes persistent infection remains elusive. Here, we characterize the IBs of BoDV-1 in terms of liquid-liquid phase separation (LLPS). The BoDV-1 phosphoprotein (P) alone induces LLPS and the nucleoprotein (N) is incorporated into the P droplets in vitro. In contrast, co-expression of N and P is required for the formation of IB-like structure in cells. Furthermore, while BoDV-1 P binds to RNA, an excess amount of RNA dissolves the liquid droplets formed by N and P in vitro. Notably, the intrinsically disordered N-terminal region of BoDV-1 P is essential to drive LLPS and to bind to RNA, suggesting that both abilities could compete with one another. These features are unique among mononegaviruses, and thus this study will contribute to a deeper understanding of LLPS-driven organization and RNA-mediated regulation of biomolecular condensates.


Assuntos
Doença de Borna/metabolismo , Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Corpos de Inclusão Viral/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Animais , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/patologia , Doença de Borna/patologia , Fracionamento Celular/métodos , Células Cultivadas , Imunofluorescência , Corpos de Inclusão Viral/patologia , Extração Líquido-Líquido , Microscopia Confocal
4.
J Virol ; 95(21): e0093621, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406860

RESUMO

An RNA virus-based episomal vector (REVec) based on Borna disease virus 1 (BoDV-1) is a promising viral vector that achieves stable and long-term gene expression in transduced cells. However, the onerous procedure of reverse genetics used to generate an REVec is one of the challenges that must be overcome to make REVec technologies practical for use. In this study, to resolve the problems posed by reverse genetics, we focused on BoDV-2, a conspecific virus of BoDV-1 in the Mammalian 1 orthobornavirus. We synthesized the BoDV-2 nucleoprotein (N) and phosphoprotein (P) according to the reference sequences and evaluated their effects on the RNA polymerase activity of the BoDV-1 large protein (L) and viral replication. In the minireplicon assay, we found that BoDV-2 N significantly enhanced BoDV-1 polymerase activity and that BoDV-2 P supported further enhancement of this activity by N. A single amino acid substitution assay identified serine at position 30 of BoDV-2 N and alanine at position 24 of BoDV-2 P as critical amino acid residues for the enhancement of BoDV-1 polymerase activity. In reverse genetics, conversely, BoDV-2 N alone was sufficient to increase the rescue efficiency of the REVec. We showed that the REVec can be rescued directly from transfected 293T cells by using BoDV-2 N as a helper plasmid without cocultivation with Vero cells and following several weeks of passage. In addition, a chimeric REVec harboring the BoDV-2 N produced much higher levels of transgene mRNA and genomic RNA than the wild-type REVec in transduced cells. Our results contribute to not only improvements to the REVec system but also to understanding of the molecular regulation of orthobornavirus polymerase activity. IMPORTANCE Borna disease virus 1 (BoDV-1), a prototype virus of the species Mammalian 1 orthobornavirus, is a nonsegmented negative-strand RNA virus that persists in the host nucleus. The nucleoprotein (N) of BoDV-1 encapsidates genomic and antigenomic viral RNA, playing important roles in viral transcription and replication. In this study, we demonstrated that the N of BoDV-2, another genotype in the species Mammalian 1 orthobornavirus, can participate in the viral ribonucleoprotein complex of BoDV-1 and enhance the activity of BoDV-1 polymerase (L) in both the BoDV-1 minireplicon assay and reverse genetics system. Chimeric recombinant BoDV-1 expressing BoDV-2 N but not BoDV-1 N showed higher transcription and replication levels, whereas the propagation and infectious particle production of the chimeric virus were comparable to those of wild-type BoDV-1, suggesting that the level of viral replication in the nucleus is not directly involved in the progeny virion production of BoDVs. Our results demonstrate a molecular mechanism of bornaviral polymerase activity, which will contribute to further development of vector systems using orthobornaviruses.


Assuntos
Vírus da Doença de Borna/enzimologia , Vírus da Doença de Borna/metabolismo , Vetores Genéticos/metabolismo , Nucleoproteínas/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Vírus não Classificados/metabolismo , Sequência de Aminoácidos , Animais , Doença de Borna/virologia , Núcleo Celular/virologia , Chlorocebus aethiops , Células HEK293 , Humanos , Plasmídeos/metabolismo , RNA Viral/metabolismo , Genética Reversa/métodos , Células Vero , Proteínas Virais/metabolismo , Replicação Viral
5.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34227935

RESUMO

Members of the family Bornaviridae produce enveloped virions containing a linear negative-sense non-segmented RNA genome of about 9 kb. Bornaviruses are found in mammals, birds, reptiles and fish. The most-studied viruses with public health and veterinary impact are Borna disease virus 1 and variegated squirrel bornavirus 1, both of which cause fatal encephalitis in humans. Several orthobornaviruses cause neurological and intestinal disorders in birds, mostly parrots. Endogenous bornavirus-like sequences occur in the genomes of various animals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Bornaviridae, which is available at ictv.global/report/bornaviridae.


Assuntos
Vírus da Doença de Borna/classificação , Bornaviridae/classificação , Animais , Doença de Borna/virologia , Vírus da Doença de Borna/genética , Vírus da Doença de Borna/fisiologia , Vírus da Doença de Borna/ultraestrutura , Bornaviridae/genética , Bornaviridae/fisiologia , Bornaviridae/ultraestrutura , Genoma Viral , Especificidade de Hospedeiro , Humanos , Vírion/ultraestrutura , Replicação Viral
6.
J Med Virol ; 93(11): 6163-6171, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34260072

RESUMO

Borna disease virus (BoDV-1) can infect the hippocampus and limbic lobes of newborn rodents, causing cognitive deficits and abnormal behavior. Studies have found that neuroinflammation caused by viral infection in early life can affect brain development and impair learning and memory function, revealing the important role of neuroinflammation in cognitive impairment caused by viral infection. However, there is no research to explore the pathogenic mechanism of BoDV-1 in cognition from the direction of neuroinflammation. We established a BoDV-1 infection model in rats, and tested the learning and memory impairment by Morris water maze (MWM) experiment. RNAseq was introduced to detect changes in the gene expression profile of BoDV-1 infection, focusing on inflammation factors and related signaling pathways. BoDV-1 infection impairs the learning and memory of Sprague-Dawley rats in the MWM test and increases the expression of inflammatory cytokines in the hippocampus. RNAseq analysis found 986 differentially expressed genes (DEGs), of which 845 genes were upregulated and 141 genes were downregulated, and 28 genes were found to be enriched in the toll-like receptor (TLR) pathway. The expression of TLR4, MyD88, and IRF5 in the hippocampus was significantly changed in the BoDV-1 group. Our results indicate that BoDV-1 infection stimulates TLR4/MyD88/IRF5 pathway activation, causing the release of downstream inflammatory factors, which leads to neuroinflammation in rats. Neuroinflammation may play a significant role in learning and memory impairment caused by BoDV-1 infection.


Assuntos
Doença de Borna/patologia , Vírus da Doença de Borna/fisiologia , Fatores Reguladores de Interferon/metabolismo , Memória/fisiologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Sequência de Bases , Doença de Borna/virologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Inflamação/metabolismo , Fatores Reguladores de Interferon/genética , Aprendizagem em Labirinto , Fator 88 de Diferenciação Mieloide/genética , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like/genética
7.
Scand J Immunol ; 93(1): e12974, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32910495

RESUMO

High expression of suppressors of cytokine signalling (SOCS) has been detected during various viral infections. As a negative feedback regulator, SOCS participates in the regulation of multiple signalling pathways. In this study, to study the related mechanism between SOCS and BDV and to explore the effect of SOCS on IFN pathways in nerve cells, downregulated of SOCS1/3 in oligodendroglial (OL) cells and OL cells persistently infected with BDV (OL/BDV) were constructed with RNA interference technology. An interferon inducer (poly I:C, PIC) and an IFN-α/ß R1 antibody were used as stimulation in the SOCS1/3 low-expression cell models, qRT-PCR was used to detect type I IFN and BDV nucleic acid expression, Western blot was used to detect the expression of BDV P40 protein. After BDV acute infection with OL cells which with downregulated SOCS expression, the virus accounting was not detected, and the viral protein expression was lower than that of OL/BDV cells; the OL/BDV cells with downregulated SOCS expression had lower virus nucleic acid and protein expression than OL/BDV cells. Stimulated by IFN-α/ß R1 antibody, the expression of type I interferon in OL/BDV cells decreased, and the content of BDV nucleic acid and protein increased, which was higher than that of OL/BDV cells. From the results, it was concluded that downregulating SOCS1/3 can inhibit the formation of acute BDV infection and virus replication in persistent BDV infection by promoting the expression of IFN-α/ß and that SOCS can be used as a new target for antiviral therapy.


Assuntos
Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Regulação da Expressão Gênica , Proteínas Supressoras da Sinalização de Citocina/genética , Biomarcadores , Doença de Borna/metabolismo , Linhagem Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Interferon-alfa/genética , Interferon beta/genética , RNA Mensageiro/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Replicação Viral
8.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817215

RESUMO

Endogenous retroviruses have demonstrated exaptation during long-term evolution with hosts, e.g., resulting in acquisition of antiviral effect on related extant viral infections. While empirical studies have found that an endogenous bornavirus-like element derived from viral nucleoprotein (itEBLN) in the ground squirrel genome shows antiviral effect on virus replication and de novo infection, the antiviral mechanism, dynamics, and quantitative effect of itEBLN remain unknown. In this study, we experimentally and theoretically investigated the dynamics of how an extant bornavirus, Borna disease virus 1 (BoDV-1), spreads and replicates in uninfected, BoDV-1-infected, and itEBLN-expressing cultured cells. Quantifying antiviral effect based on time course data sets, we found that the antiviral effects of itEBLN are estimated to be 75% and 34% on intercellular virus spread and intracellular virus replication, respectively. This discrepancy between intercellular virus spread and intracellular viral replication suggests that viral processes other than the replication of viral ribonucleoprotein complex (RNP) contributed to the suppression of virus spread in itEBLN-expressing cells. Because itEBLN binds to the BoDV-1 RNP, the suppression of viral RNP trafficking can be an attractive candidate explaining this discrepancy.IMPORTANCE Accumulating evidence suggests that some endogenous viral elements (EVEs), including endogenous retroviruses and endogenous nonretroviral virus elements, have acquired functions in the host as a result of long-term coevolution. Recently, an endogenous bornavirus-like element (itEBLN) found in the ground squirrel genome has been shown to have antiviral activity against exogenous bornavirus infection. In this study, we first quantified bornavirus spread in cultured cells and then calculated the antiviral activity of itEBLN on bornavirus infection. The calculated antiviral activity of itEBLN suggests its suppression of multiple processes in the viral life cycle. To our knowledge, this is the first study quantifying the antiviral activity of EVEs and speculating on a model of how some EVEs have acquired antiviral activity during host-virus arms races.


Assuntos
Vírus da Doença de Borna/genética , Genoma , Interações Hospedeiro-Patógeno/genética , Modelos Genéticos , Proteínas do Nucleocapsídeo/genética , Oligodendroglia/virologia , Adaptação Biológica , Animais , Coevolução Biológica , Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/metabolismo , Linhagem Celular , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Oligodendroglia/metabolismo , Sciuridae/genética , Sciuridae/virologia , Replicação Viral
9.
Adv Virus Res ; 107: 159-222, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32711729

RESUMO

Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.


Assuntos
Doença de Borna , Vírus da Doença de Borna , Animais , Doença de Borna/virologia , Vírus da Doença de Borna/genética , Bornaviridae/genética , Cavalos , Humanos , Vírus de RNA/genética , Ovinos
10.
BMC Pharmacol Toxicol ; 21(1): 12, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066504

RESUMO

BACKGROUND: Whether Borna disease virus (BDV-1) is a human pathogen remained controversial until recent encephalitis cases showed BDV-1 infection could even be deadly. This called to mind previous evidence for an infectious contribution of BDV-1 to mental disorders. Pilot open trials suggested that BDV-1 infected depressed patients benefitted from antiviral therapy with a licensed drug (amantadine) which also tested sensitive in vitro. Here, we designed a double-blind placebo-controlled randomized clinical trial (RCT) which cross-linked depression and BDV-1 infection, addressing both the antidepressant and antiviral efficacy of amantadine. METHODS: The interventional phase II RCT (two 7-weeks-treatment periods and a 12-months follow-up) at the Hannover Medical School (MHH), Germany, assigned currently depressed BDV-1 infected patients with either major depression (MD; N = 23) or bipolar disorder (BD; N = 13) to amantadine sulphate (PK-Merz®; twice 100 mg orally daily) or placebo treatment, and contrariwise, respectively. Clinical changes were assessed every 2-3 weeks by the 21-item Hamilton rating scale for depression (HAMD) (total, single, and combined scores). BDV-1 activity was determined accordingly in blood plasma by enzyme immune assays for antigens (PAG), antibodies (AB) and circulating immune complexes (CIC). RESULTS: Primary outcomes (≥25% HAMD reduction, week 7) were 81.3% amantadine vs. 35.3% placebo responder (p = 0.003), a large clinical effect size (ES; Cohen's d) of 1.046, and excellent drug tolerance. Amantadine was safe reducing suicidal behaviour in the first 2 weeks. Pre-treatment maximum infection levels were predictive of clinical improvement (AB, p = 0.001; PAG, p = 0.026; HAMD week 7). Respective PAG and CIC levels correlated with AB reduction (p = 0,001 and p = 0.034, respectively). Follow-up benefits (12 months) correlated with dropped cumulative infection measures over time (p < 0.001). In vitro, amantadine concentrations as low as 2.4-10 ng/mL (50% infection-inhibitory dose) prevented infection with human BDV Hu-H1, while closely related memantine failed up to 100,000-fold higher concentration (200 µg/mL). CONCLUSIONS: Our findings indicate profound antidepressant efficacy of safe oral amantadine treatment, paralleling antiviral effects at various infection levels. This not only supports the paradigm of a link of BDV-1 infection and depression. It provides a novel possibly practice-changing low cost mental health care perspective for depressed BDV-1-infected patients addressing global needs. TRIAL REGISTRATION: The trial was retrospectively registered in the German Clinical Trials Registry on 04th of March 2015. The trial ID is DRKS00007649; https://www.drks.de/drks_web/setLocale_EN.do.


Assuntos
Amantadina/uso terapêutico , Antidepressivos/uso terapêutico , Antivirais/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Doença de Borna/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Adulto , Amantadina/farmacologia , Animais , Anticorpos Antivirais/sangue , Antidepressivos/farmacologia , Antígenos Virais/sangue , Antivirais/farmacologia , Doença de Borna/virologia , Vírus da Doença de Borna/efeitos dos fármacos , Vírus da Doença de Borna/fisiologia , Células Cultivadas , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Coelhos , Replicação Viral/efeitos dos fármacos
11.
Virol J ; 17(1): 11, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000801

RESUMO

BACKGROUND: The majority of emerging infectious diseases are zoonotic in nature and originate from wildlife reservoirs. Borna disease, caused by Borna disease virus 1 (BoDV-1), is an infectious disease affecting mammals, but recently it has also been shown to cause fatal encephalitis in humans. The endemic character of Borna disease points towards a nature-bound reservoir, with only one shrew species identified as reservoir host to date. Bats have been identified as reservoirs of a variety of zoonotic infectious agents. Endogenous borna-like elements in the genome of certain bat species additionally point towards co-evolution of bats with bornaviruses and therefore raise the question whether bats could serve as a potential reservoir of orthobornaviruses. METHODS: Frozen brain samples (n = 257) of bats of seven different genera from Germany were investigated by orthobornaviral RT-PCR. Additionally, tissue slides of formalin-fixed paraffin-embedded material of a subset of these bats (n = 140) were investigated for orthobornaviral phosphoprotein by immunohistochemistry. RESULTS: The brain samples were tested by RT-PCR without any evidence of orthobornavirus specific amplicons. Immunohistochemistry revealed a faint immunoreaction in 3/140 bats but with an untypical staining pattern for viral antigen. CONCLUSIONS: RT-PCR-screening showed no evidence for orthobornaviral RNA in the investigated bats. However, immunohistochemistry results should be investigated further to elucidate whether the reaction might be associated with expressed endogenous bornaviral elements or other so far unknown bornaviruses.


Assuntos
Doença de Borna/virologia , Vírus da Doença de Borna/genética , Quirópteros/virologia , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Doença de Borna/epidemiologia , Vírus da Doença de Borna/química , Encéfalo/virologia , Alemanha/epidemiologia , Imuno-Histoquímica , Inclusão em Parafina , Fosfoproteínas/imunologia
12.
Lancet Infect Dis ; 20(4): 467-477, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31924550

RESUMO

BACKGROUND: In 2018-19, Borna disease virus 1 (BoDV-1), the causative agent of Borna disease in horses, sheep, and other domestic mammals, was reported in five human patients with severe to fatal encephalitis in Germany. However, information on case frequencies, clinical courses, and detailed epidemiological analyses are still lacking. We report the occurrence of BoDV-1-associated encephalitis in cases submitted to the Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany, and provide a detailed description of newly identified cases of BoDV-1-induced encephalitis. METHODS: All brain tissues from 56 encephalitis cases from Bavaria, Germany, of putative viral origin (1999-2019), which had been submitted for virological testing upon request of the attending clinician and stored for stepwise diagnostic procedure, were systematically screened for BoDV-1 RNA. Two additional BoDV-1-positive cases were contributed by other diagnostic centres. Positive results were confirmed by deep sequencing, antigen detection, and determination of BoDV-1-reactive antibodies in serum and cerebrospinal fluid. Clinical and epidemiological data from infected patients were collected and analysed. FINDINGS: BoDV-1 RNA and bornavirus-reactive antibodies were detected in eight newly analysed encephalitis cases and the first human BoDV-1 isolate was obtained from an unequivocally confirmed human BoDV-1 infection from the endemic area. Six of the eight BoDV-1-positive patients had no record of immunosuppression before the onset of fatal disease, whereas two were immunocompromised after solid organ transplantation. Typical initial symptoms were headache, fever, and confusion, followed by various neurological signs, deep coma, and severe brainstem involvement. Seven of nine patients with fatal encephalitis of unclear cause were BoDV-1 positive within one diagnostic centre. BoDV-1 sequence information and epidemiological analyses indicated independent spillover transmissions most likely from the local wild animal reservoir. INTERPRETATION: BoDV-1 infection has to be considered as a potentially lethal zoonosis in endemic regions with reported spillover infections in horses and sheep. BoDV-1 infection can result in fatal encephalitis in immunocompromised and apparently healthy people. Consequently, all severe encephalitis cases of unclear cause should be tested for bornaviruses especially in endemic regions. FUNDING: German Federal Ministry of Education and Research.


Assuntos
Doença de Borna/complicações , Doença de Borna/epidemiologia , Vírus da Doença de Borna/genética , Encefalite/etiologia , Encefalite/patologia , Zoonoses , Animais , Anticorpos Antivirais/sangue , Doença de Borna/virologia , Encefalite/mortalidade , Alemanha/epidemiologia , Cavalos/genética , Humanos , RNA Viral/genética , Ovinos/genética , Replicação Viral
13.
Virus Res ; 271: 197671, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31330207

RESUMO

BACKGROUND/AIMS: Borna disease virus 1 (BoDV-1) is a negative single-stranded RNA virus that is highly neurotropic. BoDV-1 infection can damage the central nervous system and cause inflammation. To survive in host cells, BoDV-1 must evade the host innate immune response. A previous study showed that miR-146a expression increased in neonatal rats infected with BoDV-1. miR-146a is a microRNA suggested to negatively regulate innate immune and inflammatory responses and antiviral pathways. Many groups have reported that its overexpression facilitates viral replication. However, it is unclear whether miR-146a is involved in escape from the host immune response during BoDV-1 infection. METHODS: In this study, BoDV-1 was used to infect neonatal rats within 24 h of birth intracranially, as well as to infect human microglial cells (HMC3). miR-146a expression was analyzed by RT-qPCR. The TargetScanHuman database was used to find the target genes of miR-146a. A search of the binding sites of miR-146a and its target gene's 3'-untranslated region (3'UTR) was also performed using RNAhybrid software. The binding sites of miR-146a and the target gene's 3'UTR were detected by dual luciferase reporter assays. Overexpression and suppression studies of miR-146a were performed to determine its effect on BoDV-1 replication. The relative protein expression of members of the IRAK1/TRAF6/NF-κB signaling pathway was also evaluated by western blotting in HMC3. RESULTS: After BoDV-1 infection of neurons in vivo and of HMC3 cells, miR-146a expression was significantly upregulated. miR-146a overexpression in HMC3 cells promoted viral replication, while its inhibition inhibited it. Through the TargetScanHuman database, we identified the target genes of anti-inflammatory miR-146a: IRAK1 and TRAF6. We also found that BoDV-1 could inhibit IRAK1 and TRAF6 expression in HMC3 cells. Moreover, we showed that the inhibition of IRAK1 and TRAF6 also led to decreases in the expression of P65 and phosphorylated P65 in the downstream NF-κB pathway. Subsequently, we confirmed the interaction of miR-146a with IRAK1 and TRAF6 by luciferase assay. CONCLUSION: Our results suggest that miR-146a inhibits the IRAK1/TRAF6/NF-κB signaling pathway to facilitate BoDV-1 survival in host cells.


Assuntos
Doença de Borna/genética , Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Quinases Associadas a Receptores de Interleucina-1/genética , NF-kappa B/genética , Fator 6 Associado a Receptor de TNF/genética , Regiões 3' não Traduzidas , Animais , Doença de Borna/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Quinases Associadas a Receptores de Interleucina-1/metabolismo , NF-kappa B/metabolismo , Ratos , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Replicação Viral
14.
Int J Mol Sci ; 20(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875911

RESUMO

Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory pathway. However, (I) susceptible cell types that replicate the virus for successful spread, and (II) the role of olfactory ensheathing cells (OECs), remained unclear. To address this, we studied the intranasal infection of adult rats with BoDV-1 in vivo and in vitro, using olfactory mucosal (OM) cell cultures and the cultures of purified OECs. Strikingly, in vitro and in vivo, viral antigen and mRNA were present from four days post infection (dpi) onwards in the olfactory receptor neurons (ORNs), but also in all other cell types of the OM, and constantly in the OECs. In contrast, in vivo, BoDV-1 genomic RNA was only detectable in adult and juvenile ORNs, nerve fibers, and in OECs from 7 dpi on. In vitro, the rate of infection of OECs was significantly higher than that of the OM cells, pointing to a crucial role of OECs for infection via the olfactory pathway. Thus, this study provides important insights into the transmission of neurotropic viral infections with a zoonotic potential.


Assuntos
Vírus da Doença de Borna/patogenicidade , Bulbo Olfatório/virologia , Mucosa Olfatória/virologia , RNA Viral/genética , Animais , Doença de Borna/virologia , Vírus da Doença de Borna/genética , Técnicas de Cultura de Células , Células Cultivadas , Modelos Animais de Doenças , Humanos , Bulbo Olfatório/citologia , Mucosa Olfatória/citologia , Ratos , Zoonoses/virologia
15.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541858

RESUMO

Targeting of viral proteins to specific subcellular compartments is a fundamental step for viruses to achieve successful replication in infected cells. Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, uniquely replicates and persists in the cell nucleus. Here, it is demonstrated that BoDV nucleoprotein (N) transcripts undergo mRNA splicing to generate truncated isoforms. In combination with alternative usage of translation initiation sites, the N gene potentially expresses at least six different isoforms, which exhibit diverse intracellular localizations, including the nucleoplasm, cytoplasm, and endoplasmic reticulum (ER), as well as intranuclear viral replication sites. Interestingly, the ER-targeting signal peptide in N is exposed by removing the intron by mRNA splicing. Furthermore, the spliced isoforms inhibit viral polymerase activity. Consistently, recombinant BoDVs lacking the N-splicing signals acquire the ability to replicate faster than wild-type virus in cultured cells, suggesting that N isoforms created by mRNA splicing negatively regulate BoDV replication. These results provided not only the mechanism of how mRNA splicing generates viral proteins that have distinct functions but also a novel strategy for replication control of RNA viruses using isoforms with different subcellular localizations.IMPORTANCE Borna disease virus (BoDV) is a highly neurotropic RNA virus that belongs to the orthobornavirus genus. A zoonotic orthobornavirus that is genetically related to BoDV has recently been identified in squirrels, thus increasing the importance of understanding the replication and pathogenesis of orthobornaviruses. BoDV replicates in the nucleus and uses alternative mRNA splicing to express viral proteins. However, it is unknown whether the virus uses splicing to create protein isoforms with different functions. The present study demonstrated that the nucleoprotein transcript undergoes splicing and produces four new isoforms in coordination with alternative usage of translation initiation codons. The spliced isoforms showed a distinct intracellular localization, including in the endoplasmic reticulum, and recombinant viruses lacking the splicing signals replicated more efficiently than the wild type. The results provided not only a new regulation of BoDV replication but also insights into how RNA viruses produce protein isoforms from small genomes.


Assuntos
Processamento Alternativo/genética , Vírus da Doença de Borna/genética , Nucleoproteínas/genética , Proteínas Virais/genética , Replicação Viral/genética , Animais , Sequência de Bases , Doença de Borna/virologia , Linhagem Celular , Núcleo Celular/virologia , Chlorocebus aethiops , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Isoformas de Proteínas/genética , RNA Viral/genética , Análise de Sequência de RNA , Células Vero
18.
Cell Physiol Biochem ; 49(1): 381-394, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138929

RESUMO

BACKGROUND/AIMS: Borna disease virus 1 (BoDV-1) infection induces cognitive impairment in rodents. Emerging evidence has demonstrated that Chromatin remodeling through histone acetylation can regulate cognitive function. In the present study, we investigated the epigenetic regulation of chromatin that underlies BoDV-1-induced cognitive changes in the hippocampus. METHODS: Immunofluorescence assay was applied to detect BoDV-1 infection in hippocampal neurons and Sprague-Dawley rats models. The histone acetylation levels both in vivo and vitro were assessed by western blots. The acetylation-regulated genes were identified by ChIP-seq and verified by RT-qPCR. Cognitive functions were evaluated with Morris Water Maze test. In addition, Golgi staining, and electrophysiology were used to study changes in synaptic structure and function. RESULTS: BoDV-1 infection of hippocampal neurons significantly decreased H3K9 histone acetylation level and inhibited transcription of several synaptic genes, including postsynaptic density 95 (PSD95) and brain-derived neurotrophic factor (BDNF). Furthermore, BoDV-1 infection of Sprague Dawley rats disrupted synaptic plasticity and caused spatial memory impairment. These rats also exhibited dysregulated hippocampal H3K9 acetylation and decreased PSD95 and BDNF protein expression. Treatment with the HDAC inhibitor, suberanilohydroxamic acid (SAHA), attenuated the negative effects of BoDV-1. CONCLUSION: Our results demonstrate that regulation of H3K9 histone acetylation may play an important role in BoDV-1-induced memory impairment, whereas SAHA may confer protection against BoDV-1-induced cognitive impairments. This study finds important mechanism of BoDV-1 infection disturbing neuronal synaptic plasticity and inducing cognitive dysfunction from the perspective of histone modification.


Assuntos
Doença de Borna/patologia , Vírus da Doença de Borna/fisiologia , Histonas/metabolismo , Memória/fisiologia , Acetilação/efeitos dos fármacos , Animais , Doença de Borna/virologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Ácidos Hidroxâmicos/farmacologia , Aprendizagem em Labirinto , Memória/efeitos dos fármacos , Plasticidade Neuronal/genética , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Vorinostat
19.
Proc Natl Acad Sci U S A ; 115(7): 1611-1616, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378968

RESUMO

The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.


Assuntos
Doença de Borna/virologia , Vírus da Doença de Borna/fisiologia , Transtornos Cognitivos/etiologia , Hipocampo/virologia , Memória de Longo Prazo/fisiologia , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Doença de Borna/metabolismo , Doença de Borna/patologia , Células Cultivadas , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Giro Denteado/metabolismo , Giro Denteado/patologia , Giro Denteado/virologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Mutação , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Fosfoproteínas/genética , Fosforilação , Proteína Quinase C/genética , Proteínas Estruturais Virais/genética
20.
Mol Med Rep ; 17(4): 5416-5422, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363723

RESUMO

In order to study the application of antibodies against recombinant proteins for detecting Borna disease virus (BDV) phosphoprotein (p24) and nucleoprotein (p40) (BDV­p24/p40) on paraffin sections by immunohistochemistry. The purified fusion p24 and p40 proteins were used for the preparation of polyclonal and monoclonal anti­p24 and anti­40 antibodies, which were confirmed by ELISA and western blotting. Paraffin sections were made from BDV­infected Sprague­Dawley (SD) rats (n=20), PBS­injected SD rats (n=20), normal SD rats (n=20) and normal C57 mice (n=20). Immunohistochemical staining was performed according to the EnVision™ two­step protocol. Heat­mediated antigen retrieval was performed using the retrieval buffer sodium citrate (1 mM; pH 6.0). All the antibodies against recombinant proteins exhibited good sensitivity and specificity. There were significant differences between the BDV­infected group and the BDV­uninfected group for poly­ and monoclonal anti­p24 and ­p40 antibodies. These antibodies against recombinant proteins may be used effectively to detect BDV p24 and p40 in paraffin sections.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Doença de Borna/imunologia , Imuno-Histoquímica , Nucleoproteínas/imunologia , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Antígenos Virais/imunologia , Doença de Borna/imunologia , Doença de Borna/virologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Coelhos , Ratos , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...